Extensions 1→N→G→Q→1 with N=C23 and Q=Dic14

Direct product G=N×Q with N=C23 and Q=Dic14
dρLabelID
C23×Dic14448C2^3xDic14448,1365

Semidirect products G=N:Q with N=C23 and Q=Dic14
extensionφ:Q→Aut NdρLabelID
C231Dic14 = C23⋊Dic14φ: Dic14/C14C22 ⊆ Aut C23224C2^3:1Dic14448,481
C232Dic14 = C232Dic14φ: Dic14/C14C22 ⊆ Aut C23112C2^3:2Dic14448,936
C233Dic14 = C2×C22⋊Dic14φ: Dic14/Dic7C2 ⊆ Aut C23224C2^3:3Dic14448,934
C234Dic14 = C2×C28.48D4φ: Dic14/C28C2 ⊆ Aut C23224C2^3:4Dic14448,1237

Non-split extensions G=N.Q with N=C23 and Q=Dic14
extensionφ:Q→Aut NdρLabelID
C23.1Dic14 = C24.D14φ: Dic14/C14C22 ⊆ Aut C23112C2^3.1Dic14448,83
C23.2Dic14 = C24.2D14φ: Dic14/C14C22 ⊆ Aut C23112C2^3.2Dic14448,84
C23.3Dic14 = C28.21C42φ: Dic14/C14C22 ⊆ Aut C231124C2^3.3Dic14448,117
C23.4Dic14 = C24.6D14φ: Dic14/C14C22 ⊆ Aut C23224C2^3.4Dic14448,482
C23.5Dic14 = C24.7D14φ: Dic14/C14C22 ⊆ Aut C23224C2^3.5Dic14448,483
C23.6Dic14 = C23.Dic14φ: Dic14/C14C22 ⊆ Aut C231124C2^3.6Dic14448,658
C23.7Dic14 = M4(2).Dic7φ: Dic14/C14C22 ⊆ Aut C231124C2^3.7Dic14448,659
C23.8Dic14 = C28.4C42φ: Dic14/Dic7C2 ⊆ Aut C23224C2^3.8Dic14448,115
C23.9Dic14 = C24.44D14φ: Dic14/Dic7C2 ⊆ Aut C23224C2^3.9Dic14448,476
C23.10Dic14 = C24.46D14φ: Dic14/Dic7C2 ⊆ Aut C23224C2^3.10Dic14448,480
C23.11Dic14 = C24.47D14φ: Dic14/Dic7C2 ⊆ Aut C23224C2^3.11Dic14448,484
C23.12Dic14 = C2×C28.53D4φ: Dic14/Dic7C2 ⊆ Aut C23224C2^3.12Dic14448,657
C23.13Dic14 = C28.10C42φ: Dic14/C28C2 ⊆ Aut C23224C2^3.13Dic14448,109
C23.14Dic14 = C2×C56.C4φ: Dic14/C28C2 ⊆ Aut C23224C2^3.14Dic14448,641
C23.15Dic14 = C24.62D14φ: Dic14/C28C2 ⊆ Aut C23224C2^3.15Dic14448,744
C23.16Dic14 = C23.27D28φ: Dic14/C28C2 ⊆ Aut C23224C2^3.16Dic14448,746
C23.17Dic14 = C2×C14.C42central extension (φ=1)448C2^3.17Dic14448,742
C23.18Dic14 = C22×Dic7⋊C4central extension (φ=1)448C2^3.18Dic14448,1236
C23.19Dic14 = C22×C4⋊Dic7central extension (φ=1)448C2^3.19Dic14448,1238

׿
×
𝔽